
PLANT IN VITRO CULTURES AS SOURCE OF COLLAGEN CROSS-LINKING SUBSTANCES

Sibylle Kümmritz¹, <u>Kenny Rabe¹</u>, Philipp Hecht¹, Ines Stachel², Thomas Walther¹, Michael Meyer², Juliane Steingroewer¹

¹Technische Universität Dresden, Institute of Natural Materials Technology, Dresden, Germany ²Research Institute of Leather and Plastic Sheeting – FILK, Freiberg, Germany

Introduction

Plants can be used as alternative source of potential protein cross-linking A metabolites, so-called tanning agents¹. These metabolites are relevant compounds for producers of collagen based biomaterials in the field of medicine technology and cosmetics as well as food and leather production. Cross-linking of collagen is performed almost exclusively using substances which bear a toxic potential or are produced on the basis of fossil fuels such as glutaraldehyde, isothiocyanates or so

chromium salts. Iridoids and Secoiridoids are secondary plant metabolites showing a less toxic behavior but similar cross-linking abilities compared to the common tanning agents².

Screening for plants containing tanning agents

- examination of plant extracts with a SDS-PAGE based cross-linking test
- cross-linking of the collagen molecules was verified by SDS-PAGE
- promising candidates for further experiments shown in Fig. 2
- HPLC analysis of plant extracts to identify (Seco)-Iridoids (Tab. 1)

Tab. 1: Secoiridoid content of leaf extracts in ethanol/H₂O (1:1), percentage refers to the total dry extract.

Secoiridoids in leaves (content in %)

G. luteaGentiopicrosid $(5.7 \pm 0, 1 \%)$, Amarogentin (0.3%)C. erythraeaSwertiamarin $(11.8 \pm 2, 3 \%)$, Gentiopicrosid $(0.9 \pm 0, 1 \%)$,

 $C_{\rm W}$ around (1.2 \pm 0.72 0/)

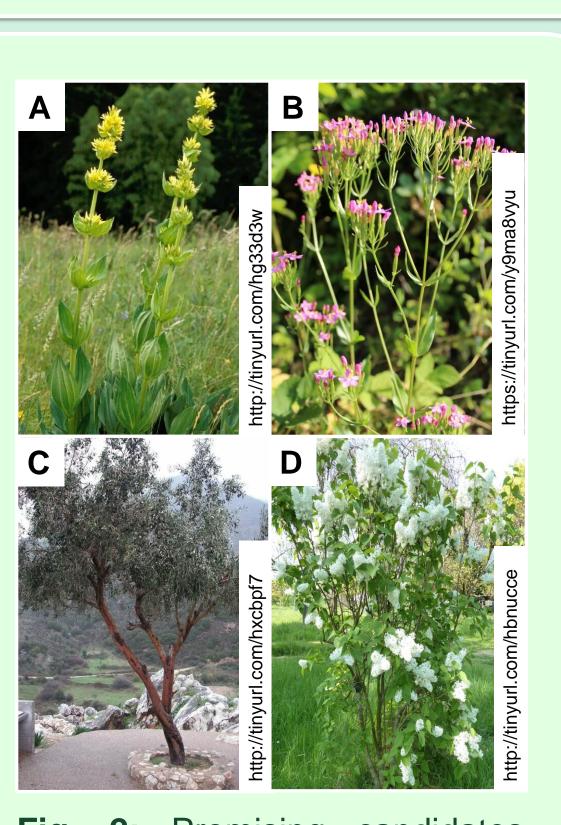
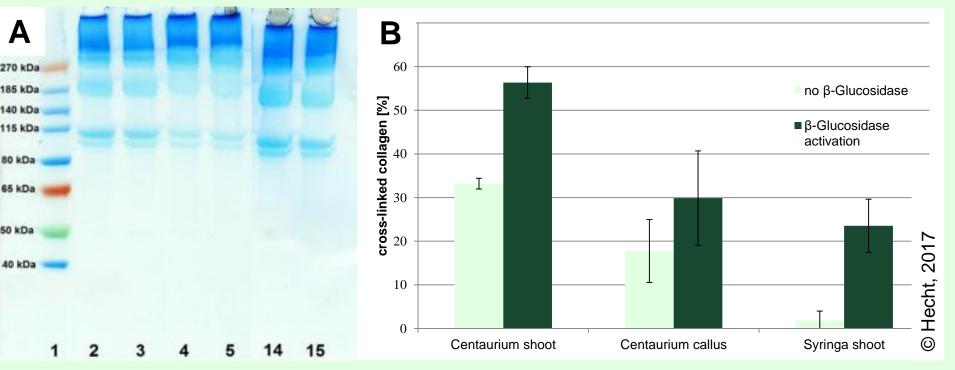


Fig. 2: Promising candidatescontainingtanningagents:

terpenoids produced by plants as a defense against herbivores and infection by microorganism.

	Swerosiu (1.5 \pm 0,75 %)
O. europaea	Oleuropein (10.9 ± 0,6 %)
S. vulgaris	Oleuropein (6.4 ± 0,6 %)


Gentiana lutea (A), Centaurium
erythraea (B), Olea europaea
(C) and Syringa vulgaris (D).

Initiation of plant cell suspension cultures

Current state of work

- shoot cultures of G. lutea, C. erythraea, O. europaea and S. vulgaris
- callus cultures of C. erythrea and S. vulgaris
- Cross-linking tests via SDS-PAGE *C. erythraea* shoots and callus together with *S. vulgaris* (shown in Fig. 3)

Fig. 3: Results of cross-linking test for acid solubilised collagen treated with *C. erythraea* and *S. vulgaris* extract. **A: 1**) protein ladder, **2-3**) extract, **4-5**) extract + β -Glucosidase, **14-15**) acid

Get in touch: M. Sc. Kenny Rabe +49 (0)351/463-39042

kenny.Rabe@tu-dresden.de

Further steps towards scale up

- Respiration Activity MOnitoring System[®] (RAMOS[®]) to characterise cell suspension cultures
 - application of different growth conditions and media to increase (Seco)-Iridioids yields
- HPLC and GCMS measurements in order to indentify and quantify (Seco-)Iridioids
- up scale and optimisation of downstream processes

Acknowledgements

The authors give thanks to the Bundesministerium für Wirtschaft und Technologie (BMWi) and Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" e.V. (AIF e.V.) for funding.

References

[1] Schroepfer M and Meyer M (2016) Investigations Towards the Binding Mechanisms of Vegetable Tanning Agents to Collagen. Res. J. Phytochem 10: 58-66.

[2] Panzavolta, S., et.al (2011) Electrospun gelatin nanofibers: Optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater. 7: 1702-1709

Gefördert durch:

aufgrund eines Beschlusses

des Deutschen Bundestages

concept Exzellenz aus Wissenschaft und Kultur